Polymer-supported cobalt carbonyl complexes as novel solid-phase catalysts of the Pauson–Khand reaction

Alex C. Comely,*a Susan E. Gibson (née Thomas)a and Neil J. Halesb

^a Department of Chemistry, King's College London, Strand, London, UK WC2R 2LS. E-mail: alex.comely@kcl.ac.uk ^b AstraZeneca UK Ltd., Mereside, Alderley Park, Macclesfield, UK SK10 4TG

Received (in Liverpool, UK) 29th November 1999, Accepted 10th January 2000

Cobalt carbonyl complexes immobilised onto a 'polymerbound triphenylphosphine' solid support are effective and practical catalysts of the Pauson–Khand reaction.

The synthesis of cyclopentenone derivatives *via* the cobalt carbonyl-mediated annulation of an alkyne, an alkene and carbon monoxide, the Pauson–Khand (P–K) reaction, was first described in 1971.¹ A synthetically very important process,² the P–K reaction is routinely applied using a stoichiometric amount of the transition metal complex. Although the catalytic process was reported as early as 1973,^{1b} it was confined to the strained reactive alkenes norbornene and norbornadiene.

Ensuing years saw little development of the catalytic P–K reaction until a protocol developed by Rautenstrauch,³ albeit one demanding extremely forcing conditions (310–360 bar ethene/CO, 150 °C) to realise only moderate yields, inspired several new approaches to catalysis. Promoters such as 1,2-dimethoxyethane or water have been investigated,⁴ the addition of phosphites is shown to prevent inactive cluster formation⁵ and the use of supercritical CO₂ as a reaction medium is described.⁶ Alternative sources of zero valent cobalt [Co(acac)₂/NaBH₄⁷ and (indenyl)Co(COD)⁸] and cobalt carbonyl clusters⁹ have also been employed. Although yields and turnovers are excellent, these systems still suffer the requirement of high temperatures and pressures.

The current state-of-the-art can be attributed to Livinghouse who in 1996 reported a photochemically driven process requiring only mild temperatures (50–55 °C) and 1 atm CO.¹⁰ A more recent report from the same group relates that careful control of temperature to within a narrow window (60–70 °C) dispenses with the need for photolytic promotion.¹¹ Rigorous purification of Co₂(CO)₈ in these systems can be obviated, reports Krafft, by prior base washing of the glassware.¹² Problems associated with the very labile Co₂(CO)₈, however, have also spurred the development of stable cobalt–alkyne catalyst precursors.¹³

Given our current interest in polymer-supported cobalt complexes¹⁴ and increasing awareness of the environmental and handling advantages conferred by such solid-phase methodologies,¹⁵ we decided to determine the viability of the catalytic P–K reaction using immobilised cobalt carbonyls.[†] Our preliminary investigations, which reveal for the first time that polymer-supported cobalt complexes do indeed catalyse the P– K reaction, are reported herein.

The cobalt carbonyl resins to be tested as catalyst precursors were prepared as follows.¹⁴ Reaction of 'polymer-bound triphenylphosphine' 1^+_{+} with Co₂(CO)₈ in THF at room temperature generated a resin-bound mixture of phosphinesubstituted cobalt carbonyl complexes 2 and 3 (*ca.* 1:1) (Scheme 1). The purple resin, which is significantly more airstable than Co₂(CO)₈, was characterised on the basis of its IR and ³¹P NMR spectra.¹⁴ Heating this resin at 75 °C in 1,4-dioxane cleanly converted it into a second form, assigned the structure of the neutral bisphosphine 4 on the basis of its IR and ³¹P NMR spectra.¹⁴ Resin 4, however, can be more conveniently prepared directly from 1 and Co₂(CO)₈§ without prior isolation of 2 + 3.

In light of the mild and very attractive conditions reported by Livinghouse for the catalytic P–K reaction, and in particular the thermal window identified between 60 and 70 °C,¹¹ it was these conditions which were used as the basis for our initial experiments with the cobalt–carbonyl loaded resins.¶ At 65 °C we were very encouraged by the observation that 5 mol% of either precursor 2 + 3 or 4 effected a moderate conversion of enyne substrate 5^{17} to cyclopentenone 6^{10} after 24 h in THF

under a 50 mbar overpressure of CO (Table 1, entries 1 and 2). In preliminary steps to optimise the methodology, the first parameter investigated was temperature. An increase to 70 °C (Table 1, entries 3 and 4) resulted in a significant increase in conversion for both catalyst precursors, the bisphosphine-substituted complex **4** again proving to be the most effective

Table 1 Conversion of substrates 5 and 7 into 6 and 8 respectively *via* the catalytic Pauson–Khand reaction using cobalt resins 2 + 3 and 4¶

Entry	Catalyst precursor (5 mol%)	T/°C	Substrate	Product	Yield (%) ^a (isolated)
1	2 + 3	65	5	6	22
2	4	65	5	6	48
3	2 + 3	70	5	6	37
4	4	70	5	6	66 (61)
5	2 + 3	75	5	6	21
6	4	75	5	6	28
7	2 + 3	70	7	8	28
8	4	70	7	8	57 (49)

^{*a*} Describes percentage conversion measured by ¹H NMR spectroscopy. Isolated yields are those obtained after flash column chromatography. Products were characterised by comparison of their ¹H, ¹³C and IR spectra with the literature values (ref. 10). producing 66% conversion and 61% isolated yield of **6**. The consequence of a further 5 °C increase in temperature, however, was a precipitous drop in conversion for both forms of the catalyst alike (Table 1, entries 5 and 6).

A further substrate was subjected to our preliminarily optimised conditions. Hence, enyne $7^{10,18}$ was cyclised to cyclopentenone 6^{10} in a respectable 49% isolated yield, catalyst precursor 4 again resulting in the highest conversion (Table 1, entries 7 and 8).

In conclusion, we have shown for the first time that solidphase cobalt carbonyl complexes have significant potential as catalysts of the P–K reaction. As with all supported catalysts, a very simple work-up procedure is required: filtration of the polymer-bound catalyst and concentration of the filtrate. A further advantage conferred by the increased air-stability of the immobilised cobalt complexes is ease of handling using readily available laboratory equipment. Our results, together with the environmental advantages of immobilising metal carbonyls on a solid support, suggest that this new approach to the P–K reaction is worthy of considerable further investigation.

The authors wish to thank AstraZeneca UK Ltd. for a studentship (A. C. C.).

Notes and references

^{\dagger} Polymer-bound P–K substrates have been cyclised in the presence of stoichiometric amounts of Co₂(CO)₈ (ref. 16).

 \ddagger 'Polymer-bound triphenylphosphine' (commercially available from Fluka, ~1.6 mmol P g⁻¹) describes a diphenylphosphino polystyrene polymer crosslinked with 1% divinylbenzene.

§ The experimental procedure for the formation of **4** is as follows: commercial polymer-bound triphenylphosphine (1 g, ~1.6 mmol P) was suspended in oxygen-free anhydrous 1,4-dioxane (15 cm³) and allowed to swell for 30 min under N₂ agitation. A solution of commercial Co₂(CO)₈ complex (383 mg, 1.12 mmol) in anhydrous, deoxygenated 1,4-dioxane (5 cm³) was added under nitrogen agitation, the black mixture was left at room temperature for 30 min and subsequently heated to 75 °C for 16 h. After cooling, the resin beads were filtered, washed with alternate aliquots of THF and Et₂O until the filtrate became colourless, and dried *in vacuo* to afford deep purple beads of **4** {1.15 g, 50% P site complexation, 0.35 ± 0.05 mmol [Co₂(CO)₆] g⁻¹}.

¶ A general experimental for the catalytic P–K reaction is as follows: resin 4 {63 mg, 0.025 mmol $[Co_2(CO)_6]$ } and substrate 5 (125 mg, 0.5 mmol) were combined in a 10 cm³ round-bottomed flask fitted with a condenser. The apparatus was thoroughly purged with CO and sealed under 1.05 bar CO. CO-saturated THF (5 cm³) was added and the mixture was heated to 70 °C for 24 h. Filtration of the pale brown mixture, thorough washing of the polymer beads with alternate aliquots of THF and Et₂O, and concentration of the combined filtrates *in vacuo* afforded cyclopentenone **6** [66% conversion by ¹H NMR spectroscopy; 85 mg, 61% isolated by flash chromatography (SiO₂, EtOAc–light petroleum, 2:8 to 4:6 gradient elution), 0.31 mmol].

- (a) I. U. Khand, G. R. Knox, P. L. Pauson and W. E. Watts, J. Chem. Soc., Chem. Commun., 1971, 36; (b) I. U. Khand, G. R. Knox, P. L. Pauson, W. E. Watts and M. I. Foreman, J. Chem. Soc., Perkin Trans. 1, 1973, 977.
- 2 For recent reviews see: O. Geis and H.-G. Schmalz, Angew. Chem., Int. Ed., 1998, 37, 911; Y. K. Chung, Coord. Chem. Rev., 1999, 188, 297.
- 3 V. Rautenstrauch, P. Mégard, J. Conesa and W. Küster, Angew. Chem., Int. Ed. Engl., 1990, 29, 1413.
- 4 T. Sugihara and M. Yamaguchi, Synlett, 1998, 1384.
- 5 N. Jeong, S. H. Hwang, Y. Lee and Y. K. Chung, J. Am. Chem. Soc., 1994, **116**, 3159.
- 6 N. Jeong, S. H. Hwang, Y. W. Lee and J. S. Lim, J. Am. Chem. Soc., 1997, 119, 10549.
- 7 N. Y. Lee and Y. K. Chung, Tetrahedron Lett., 1996, 37, 3145.
- 8 B. Y. Lee, Y. K. Chung, N. Jeong, Y. Lee and S. H. Hwang, J. Am. Chem. Soc., 1994, **116**, 8793.
- 9 J. W. Kim and Y. K. Chung, *Synthesis*, 1998, 142; T. Sugihara and M. Yamaguchi, *J. Am. Chem. Soc.*, 1998, **120**, 10782.
- 10 B. L. Pagenkopf and T. Livinghouse, J. Am. Chem. Soc., 1996, 118, 2285.
- 11 D. B. Belanger, D. J. R. O'Mahony and T. Livinghouse, *Tetrahedron Lett.*, 1998, **39**, 7637.
- 12 M. E. Krafft, L. V. R. Bonaga and C. Hirosawa, *Tetrahedron Lett.*, 1999, 40, 9171.
- D. B. Belanger and T. Livinghouse, *Tetrahedron Lett.*, 1998, **39**, 7641;
 M. E. Krafft, C. Hirosawa and L. V. R. Bonaga, *Tetrahedron Lett.*, 1999, **40**, 9177.
- 14 A. C. Comely, S. E. Gibson and N. J. Hales, *Chem. Commun.*, 1999, 2075.
- 15 A. R. Brown, P. H. H. Hermkens, H. C. J. Ottenheijm and D. C. Rees, Synlett, 1998, 817; S. J. Shuttleworth, S. M. Allin and P. K. Sharma, Synthesis, 1997, 1217.
- 16 For reports of the P–K reaction on polymer-bound P–K substrates: N. E. Schore and S. D. Najdi, *J. Am. Chem. Soc.*, 1990, **112**, 441; J. L. Spitzer, M. J. Kurth, N. E. Schore and S. D. Najdi, *Tetrahedron*, 1997, **53**, 6791; G. L. Bolton, *Tetrahedron Lett.*, 1996, **37**, 3433; G. L. Bolton, J. C. Hodges and J. R. Rubin, *Tetrahedron*, 1997, **53**, 6611.
- 17 F. E. Scully Jr. and K. Bowdring, J. Org. Chem., 1981, 46, 5077; W. Oppolzer, A. Pimm, B. Stammen and W. E. Hume, *Helv. Chim. Acta*, 1997, 80, 623.
- 18 S. C. Berk, R. B. Grossman and S. L. Buchwald, J. Am. Chem. Soc., 1994, 116, 8593.

Communication a909462h